时间: 2024-10-08 20:32:38 | 作者: kaiyun官方平台app下载
开关传感器是一种简单、可靠的传感器,也是一种最廉价的传感器,大范围的应用于安防技术中。它可以将压力、磁场或位移等在入侵行为发生时所产生的物理量转化为传感器内部电路的“开”和“关”两种电信号。
开关在压力的作用下接通,从而发出报警信号;在无压力作用时是断开的;或者反过来工作。此类开关通常用在某些点探测器中,用以监视门、窗、柜台等特殊部位。
舌簧继电器又称干簧继电器,是一种将磁场力转化为电信号的传感器,其结构如图2-2。
干簧管的干簧触点常做成常开、常闭或转换三种不同形式。开关簧片通常烧结在与簧片热膨胀系数相近的玻璃管上,管内充有氮气或惰性气体以避免触点被氧化和腐蚀,还可以有很大效果预防空气中尘埃与水气污染。
干簧管中的簧片是用铁镍合金制成,具有非常好的导磁性能,与线圈或磁块配合,构成了干簧继电器状态的变换控制器,簧片上的触点镀金、银、铑等贵金属,以保证通断能力。常开舌簧继电器的两个簧片在外磁场作用下其自由端产生的磁极极性正好相反,二触点相互吸合,外磁场不作用时触点是断开的,故称常开式舌簧继电器。 常闭舌簧管的结构正好与常开式相反,是无磁场作用时吸合,有磁场作用时断开。转换式舌簧继电器有常开、常闭两对触点,在外磁场作用下状态发生转换。
使用时通常把磁铁安装在被防范物体(如门、窗等)的活动部位(门扇、窗扇),干簧管安装在固定部位(门框、窗框),如图2-3所示。
磁铁与舌簧管的位置要调整适当,以保征门窗关闭时磁铁与干簧管接近而干簧管触点动作,当门窗打开时干簧管触点复位而产生报警信号。
易断金属线是一种用导电性能好的金属材料制造成的机械强度不高、容易断裂的导线,用它作为传感器时,可将其捆绕在门、窗把手或被保护的物体上,当门、窗被强行打开或物体被意外移动时金属线断裂,使与其连通的电路断路而发出报警信号。易断金属导线mm的漆包线,也能够使用一种导电胶粘带。易断金属导线具有结构相对比较简单、价格低的优点,缺点是不便于伪装且没有自恢复功能。
压力垫也可当作开关报警探测器的一种传感器。压力垫通常放在防范区域的地毯下面,如图2-4所示。将两长条形金属带平行相对地分别放在地毯背面和地板之间,两条金属带之间有几个位置使用在允许电压下不导电的材料支撑,使两条金属带互不接触,此时相当与传感器开关断开,当入侵者进入防范区域时,踩踏地毯而使相应部位受力凹陷,两条金属带接触,此时相当于传感器开关闭合而发出报警信号。
压力传感器把传感器上受到的压力变化转换为相应的电量变化,经过放大成为电信号。某些晶体材料,当某方向收到外部作用力作用时,其内部就会产生极化现象,在某方向两个表面上产生正负电荷,当作用力改变时,电荷的大小和极性随之改变,晶体所产生的电荷量大小和极性随之改变,晶体所产生的电荷量大小与外力的大小成正比,这种现象称正压电效应。反之某些晶体加一交变电场,晶体将产生机械变形,这种现象称逆压电效应。图2-5为压电效应原理示意图。
具有压电效应的晶体材料我们称之为压电材料。压力传感器就是利用压电材料的正压电效应制成。
现在常用的压电材料是人工合成的。天然的压电单晶也有,但效率低,利用难度较大,用的较少,只有在高温或低温等特殊状态下,才利用单晶石英晶体。
压电陶瓷是人工烧结的一种常用多晶压电材料,压电陶瓷烧结方便,容易成形,强度高,而且压/电转换的系数大,为天然单晶石英晶体的几十倍,而制造成本只有石英单晶的百分之一,因此压电陶瓷广泛被用做高效压力传感器材料。
压电陶瓷材料烧结后,最初并不具有压力特性。这种陶瓷材料内部有许多无序排列的“电畴”,这些“电畴”在一定外界温度下,接受一强化电场的作用,使其按外电场的方向整齐排列,这就是极化过程。极化后的陶瓷材料在撤去外电场后,其内部电畴的排列不变,具有很强的极化排列,这时陶瓷材料才具有压电性。
压电陶瓷材料通常做成长方体。当某一方向上的对应两面受到外界的力的作用时,在压电陶瓷的这两面上就会出现电荷堆积,电量的大小与受力的大小成正比。此时压电陶瓷相当于一个静电发生器,或是一个以压电材料为介质的电容器,电容量的大小为
而电容两端的开路电压U=Q/C,Q为极板上电荷量的大小,与所受外力成正比,一般电量Q很小,因此感应出的U也很小。为了能检测出U的变化,要求压电陶瓷本身有相应的阻抗,同时前端放大器也应有极高的输入阻抗,通常探测器的前端放大器用场效应管来担当。由于输入阻抗过高,很容易窜入干扰信号,为此前端放大器应直接接在传感器的输出端,信号经放大后输出一个高电平 、低阻抗的探测电信号。
有机压电材料是新近研究开发出来的新型压电材料,如聚氯乙烯、聚二氟乙烯等,它具有柔软、不易破碎的特点。
半导体压力传感器是利用硅结晶的压电电阻效应以及二极管、晶体管的电流、电压特性制成的元件。当硅半导体材料受到外力作用时,晶体处于扭曲状态,由于载流子迁移率的变化而导致晶体阻抗变化的现象称之为压电电阻效应。用R表示晶体阻抗的变化,它的变化率为:
图2-6所示为半导体压力传感器结构。当硅膜片受压时,扩散电阻值发生变化,将R1、R2、R3、R4接成桥路,如图2-7所示。
图2-8为半导体压力传感器的压电传输特性,可以看出输出电压随压力的变化而变化,且线 压电传输特性
用来检测压力的传感器还有静电容式压力传感器和硅振动式压力传感器。静电容式压力传感器是将压力膜微小的位置变化转换成静电容变化的传感器。硅振动式压力传感器是用微加工方法将膜片加工成长50?m、宽20?m~30?m、厚5?m的硅振子膜片,当膜片受到压力时,则把压力转换为张力,使膜片产生振动。但为使振子不直接与测量膜片接触,防止振子的污染和劣化,而将其全部封在真空室内,故硅振动式压力传感器的工作条件要求极高,在这里就不详述了。
入侵事件发生时,总会有说话、走动、击碎玻璃、锯钢筋等声音发生,能够把这些声音信号转换成一定电量的传感器都称为声传感器。
声音为一种机械波,声音的传播是机械波在媒质中传播的过程。当声波频率在20Hz~20kHz时人耳能接收到,称为可闻声波。当频率低于20Hz时称为次声波,高于20kHz时称为超声波,次声波和超声波人耳均听不到。
驻极体是一种永久性带电的介电材料,它能把声能或机械能转换成电能,或者将电能转换成机械能或声能。
驻极体传感器的核心是驻极体箔。它由一张绝缘薄膜组成,薄膜上带电荷,通常由聚四氟乙烯等碳卤聚合物制成,具有极高的绝缘电阻。通过外电场对绝缘薄膜两侧充电,则膜上的电荷能长时间保存。若在常温和相对干燥的环境下保存,聚四氟乙烯上的电荷能保存近百年;在常温和相对湿度为95%的潮湿环境下,电荷的衰减时间也能达到近10年。
通常把一片驻极体膜紧贴在一块金属板上,另一片驻极体膜相对安放,中间为10?m的薄空气层,构成一个驻极体传感器。二片相对而立的驻极体膜形成一个电容器,根据静电感应原理,与驻极体相对应的金属板上会感应出大小相等、方向相反的电荷。驻极体上的电极在空隙中形成静电场,在声波作用下,驻极体箔会有一个位移d。在驻极体膜开路的条件下,膜片两端感应的静电场
驻极体箔的相对位移d与所加声强成正比,因此传感器输出的电压仅与声强有关,而与频率无关。驻极体传感器能保证在声频范围内具有恒定的灵敏度,这是极大的优点。
磁电式传感器俗称“动圈式传感器”,它是由一个固定磁场和在这磁场中可作垂直轴向运动的线圈组成,线圈安装在一个振动膜上,振动膜在声强的作用下运动,带动线圈在固定的磁场中作切割磁力线的运动,此时在线圈两端的感应电动势E的大小为:
线圈的运动速度v与声强的大小有关,故而线圈的输出电压也取决于声强的大小。
光电传感器是指能够将可见光转换成某种电量的传感器。光敏二极管是最常见的光传感器。光敏二极管的外型与一般二极管一样,只是它的管壳上开有一个嵌着玻璃的窗口,以便于光线射入,为增加受光面积,PN结的面积做得较大,光敏二极管工作在反向偏置的工作状态下,并与负载电阻相串联,当无光照时,它与普通二极管一样,反向电流很小(
光敏三极管除了具有光敏二极管能将光信号转换成电信号的功能外,还有对电信号放大的功能。光敏三级管的外型与一般三极管相差不大,一般光敏三极管只引出两个极发射极和集电极,基极不引出,管壳同样开窗口,以便光线射入。为增大光照,基区面积做得很大,发射区较小,入射光主要被基区吸收。工作时集电结反偏,发射结正偏。在无光照时管子流过的电流为暗电流Iceo=(1+)Icbo(很小),比一般三极管的穿透电流还小;当有光照时,激发大量的电子-空穴对,使得基极产生的电流Ib增大,此刻流过管子的电流称为光电流,集电极电流Ic=(1+)Ib,可见光电三极管要比光电二极管具有更高的灵敏度。
热电传感器是一种将热量变化转换为电量变化的一种能量转换器件。热释电红外线元件是一种典型的热量传感器。
可见光的波长通常在1?m以上,而1?m以下的光人眼是看不到的。0.8?m以下的红外光具有很高的放射能量(W/m2),差不多等于800K(500℃)以上高温物体释放的能量,因此常用红外光发射能量来检测入侵者的入侵及其活动。
一般的热释电材料为LiTaO3, 当受到红外线照射时,热释电材料的温度发生变化,同时其表面电荷也会发生变化。当以LiTaO3为代表的热释电材料处于自极化状态时,吸收红外线入射波后,结晶的表面温度改变,自极化也发生改变,结晶表面的电荷变得不平衡,把这种不平衡电荷的电压变化取出来,便可测出红外线。热释电材料只有在温度变化时才产生电压,如果红外线一直照射,则没有不平衡电压,一旦无红外线照射时,结晶表面电荷就处于不平衡状态,从而输出电压。
热释电红外线传感器因红外光线的照射与遮挡得到或失去热量,从而产生电压输出。从原理上讲应与波长无关,但由热释电材料做成的传感器有一个透光窗,而透光窗的选材与波长有关系。如以SiO2为窗材的传感器,它与1?m以上波长的红外线无关,而有的窗材只能通过4?m附近波长的光,有的能透过6.1?m波长的光,有的能透过8?m ~14?m波长的光,所以使用不同的窗材就可确认是哪个波长的光产生的热。
热释电元件组成的红外探测器只与窗材的波长有关,而量子型的红外光探测器与红外光的波长有关,它的特点是灵敏度高,响应速度快,响应的灵敏度与红外线波长有关。每个入射光子产生的能量
1?m红外光的能量为1.24eV,10 ?m红外光的能量为0.12eV,与可见光相比,红外线光的能量较小。量子型的红外传感器又分为光导电型和光电动势型两种。光导电型的元件材料有PbS、PbSe、Hg、Cd、Te等,它是利用红外线照射时阻抗减少的特点来获取检测信号的;而光电动势型是在Ge、IrSb等半导体基片上形成PN结,当红外线照射时产生光电动势,Ge的禁带宽度为0.6ev,Ge二极管对0.6?m和1.9?m的红外光较敏感,当入射红外光的波长在0.6?m~1.9 ?m时,在PN结上形成的电动势随入射光量的增大而增大,从而经放大可输出探测电信号。
电磁场也是物质存在的一种形式。电磁场的运动规律由麦克斯韦方程组来表示,根据麦克斯韦理论,当入侵者入侵防范区域,使原先防范区域内电磁场的分布发生变化,这种变化可能引起空间电场的变化,电场畸变传感器就是利用此特性。同时,入侵者的入侵也可能使空间电容发生变化,电容变化传感器就是利用此特性。
入侵探测器是由传感器和信号处理器组成的用来探测入侵者入侵行为的电子和机械部件组成的装置。入侵探测器的分类可按其所用传感器的特点分为开关型入侵探测器、震动型入侵探测器、声音探测器、超声波入侵探测器、次声入侵探测器、主动与被动红外入侵探测器、微波入侵探测器、激光入侵探测器、视频运动入侵探测器和多种技术复合入侵探测器。也可按防范警戒区域分为点形入侵探测器、直线型入侵探测器、面型入侵探测器和空间型入侵探测器。
对于门窗、柜台、展橱、保险柜等防范范围仅是某一特定部位使用的入侵探测器为点型入侵探测器,点型入侵探测验器通常有开关型和振动型两种。
开关入侵探测器是采用开关型传感器构成的。可以是微动开关、干簧继电器、易断金属导线或压力垫等构成。不论是常开型或是常闭型,当其状态改变时均可直接向报警控制器发出报警信号,由报警控制器发出声光警报信号。
当入侵者进入防范区域实施犯罪时,总会引起地面、墙壁、门窗、保险柜等发生震动,我们可以采用压电式传感器、电磁感应传感器或其它可感受振动信号的传感器来感受入侵时发生的振动信号,这种探测器我们称之为振动入侵探测器。
墙震动探测器及玻璃破碎探测器是典型的震动入侵探测器,这种探测器常使用压电式传感器或导电簧片开关传感器。
压电传感器是利用压电材料的压电效应制成的,当压电材料受到某方向的压力时,在一特定方向两个相对电极上分别感应出电荷,电荷量的大小与压力成正比。我们把压电传感器贴在玻璃上,当玻璃受到震动时,传感器相应的两电极上感应出电荷,形成一微弱的电位差,可以采用高放大倍数高输入阻抗的集成放大电路进行放大产生报警信号。采用半导体压力传感器的压电电阻效应制成的压电式震动入侵探测器,当半导体材料硅片受外力作用时,晶体处于扭曲状态,载流子的迁移率随之发生变化,从而发生结晶电阻的阻抗发生变化,引起输出电压的变化,此输出电压加到烧结在同一硅片上的集成放大电路而产生报警信号。
导电簧片开关型玻璃破碎探测器结构如图2-9所示,上簧片横向略呈弯曲的形状,它对噪声频率有吸收作用。绝缘体、定位螺丝将上下金属导电簧片绝缘固定在底座上,而右端触头处可靠接触。
玻璃破碎探测器的外壳粘附在需防范的玻璃的内侧。环境温度和湿度的变化及轻微震动产生的低频振动,甚至敲击玻璃所产生的振动都能被上簧片的弯曲部分吸收,不改变上下电极的接触状态,只有当探测器探测到玻璃破碎或足以使玻璃破碎的强冲击力时产生的特殊频率范围的振动才能使上下簧片振动,处于不断开闭状态,触发控制电路产生报警信号。
近年来随着数字信号处理技术的发展,一种采用微处理器的新型声音分析式玻璃破碎探测器已经出现,它是利用微处理器的声音分析技术来分析与破碎相关的特定声音频率后进行准确的报警。传感器接收防范范围内的各种声频信号送给微处理器,微处理器对其进行分析和处理以识别出玻璃破碎的入侵信号,这种探测器的误报率极低。
为减少误报率,人们还采用一种超低频检测和音频识别技术的双技术探测器。如果超低频探测技术探测到玻璃被敲击时所发出的超低频波,而在随后的一段特定时间间隔内,音频识别技术也捕捉到玻璃被击碎后发出的高频声波,那么双技术探测器就会确认发生玻璃破碎,并触发报警。
电动式振动入侵探测器是利用电磁感应传感器将振动转换成线圈两端的感应电动势输出。将电动式振动入侵传感器与保险柜、贵重物体固定在一起,当入侵者搬动或触动保险柜等物体产生振动,电动传感器随之振动,线圈与电动传感器是固定在一起的,而磁铁是通过弹簧与壳体连接在一起,壳体振动后,磁铁随之运动,在线圈上感应出电动势,其大小E=nBLv,B为磁感应强度,L为每匝线圈的长度,n为绕组匝数,v为物体的振动速度。输出电压E正比于振动速度,电动传感器具有较高的灵敏度,输出电动势较高,不需要高增益的放大器,而且电动传感器输出阻抗低,噪声干扰小。
直线型入侵探测器是指警戒范围为一条线束的探测器,当在这条警戒线上的警戒状态被破坏时发出报警信号。最常见的直线型报警探测器为红外入侵探测器、激光入侵探测器。探测器的发射机发射出一束红外光或激光,经反射或直接射到接收器上,如光束被遮断,则发出报警信号。
物理学告诉我们,电磁场是物质存在的一种形式,电磁场的运动规律是由麦克斯韦方程组来描述的,根据麦克斯韦的电磁场理论,如果在空间的某区域内有变化的电场(或磁场),那么在邻近区域内将引起变化的磁场(或电场),而这变化的磁场或电场又在更远的区域引起新的变化电场或磁场。这种由近到远,以有限的速度在空间内传播的过程称电磁波。我们平时所熟悉的光波,无线电波都是不同波长的电磁波。表2-1列出了不同电磁波的波长范围。
红外光是电磁波,它同样具有向外辐射的能力,它的波长介于无线电波的微波和可见光之间。
物理学告诉我们,凡是温度高于绝对零度的物体都能产生热辐射,而温度低于1725℃的物体产生的热辐射光谱集中在红外光区域,因而自然界的物体都能向外辐射红外光。对某种物体来说,由于其本身的物理和化学性质不同,物体本身温度不同,所产生的红外辐射的波长和距离也不同,通常分为三个波段。
红外光在大气中辐射时会产生衰减现象,主要是由于大气中各种气体对辐射的吸收(如水气、二氧化碳)和大气中悬浮微粒(如雨、雾、云、尘埃等微粒)对红外光造成的散射。
大气中红外辐射的衰减是随着波长不同而变化的,对某些波长的红外辐射衰减较少,这些波长区称为红外的“大气窗口”。能通过大气的红外辐射基本上分为三个波段,1?m ~2.5?m;3?m ~5?m;8?m ~14?m,这三个红外大气窗口为我们使用提供了方便。
所谓被动红外探测器只有红外线接收器。当被防范范围内有目标入侵并移动时,将引起该区域内红外辐射的变化,而红外探测器能探测出这种红外辐射的变化并发出报警信号。实际上除入侵物体发出红外辐射外,被探测范围内的其它物体如室外的建筑物、地形、树木、山和室内的墙壁、课桌、家俱等都会发生热辐射,但因这些物体是固定不变的,其热辐射也是稳定的,当入侵物体进入被监控区域后,稳定不变的热辐射被破坏,产生了一个变化的热辐射,而红外探测器中的红外传感器就能收到这变化的辐射,经放大处理后报警。在使用中,把探测器放置在所要防范的区域里,那些固定的景物就成为不动的背景,背景辐射的微小信号变化为噪声信号,由于探测器的抗噪能力较强,噪声信号不会引起误报,红外探测器一般用在背景不动或防范区域内无活动物体的场合。
如只考虑红外传感器本身的噪声,在探测距离内,被动红外探测器的作用距离为:
可见要提高作用距离R,应增大通光口径D。、传输效率和光谱探测度D*,减少视场角w和等效噪声带宽f。
为了提高被动红外入侵探测器的报警精度以及减少误报率,现在实际应用的被动红外探测器,多数做成把几个红外接收单元集成在一个探测器中,称为多元被动红外探测器。这样的探测器由于具有几个接收单元,则不仅能检测出其防范区域有入侵者时的红外变化,还可以因各单元安装方向的不同而接收信号的大小不同,检测出入侵者走动时产生的单元信号差值的变化,从而达到双重检测的目的,大大提高了报警精度,减少了误报率。
主动红外发射器发出一束经调制的红外光束,投向红外接收器,形成一条警戒线。当目标侵入该警戒线时,红外光束被部分或全部遮挡,接收机接收信号发生变化而报警。
主动红外探测器的发射光源通常为红外发光二极管。其特点是体积小、重量轻、寿命长、功耗小,交、直流供电都能工作,晶体管、集成电路都能直接推动。而砷镓铝双异质结半导体激光器也工作在红外波段,故也是一种主动红外探测器。主动红外探测器的光源通常为脉冲调制的脉冲波形,发射机采用自激多谐振荡器作为调制电源,产生很高占空比的脉冲波形,去调制红外发光二极管发光,发射出红外脉冲调制光谱。这样大大降低了电源的功耗,又增加了系统抗杂散光干扰的能力。
对光束遮挡型的探测器,要适当选取有效的报警最短遮光时间。遮光时间选得太短,会引起不必要的噪声干扰,如小鸟飞过、小动物穿过都会引起报警;而遮光时间太长,则可能导致漏报。通常以10m/s的速度通过镜头的遮光时间,来定最短遮光时间。若人的宽度为20cm,则最短遮光时间为20cm/(10m/s)=20ms。大于20ms,系统报警;小于20ms则不报警。
主动红外探测器体积小、重量轻、便于隐蔽,采用双光路甚至四光路的主动红外探测器可大大提高其抗噪防误报的能力以及加大防范的垂直面,另外主动红外探测器寿命长、价格低、易调整,因此被广泛使用在安全防范工程中。
然而当主动红外探测器用在室外自然环境时,比如无星光和月亮的夜晚,以及夏日中午太阳光背景辐射的强度比超过100dB时,会使接收机的光电传感器工作环境相差太大。通常采用截止滤光片,滤去背景光中的极大部分能量(主要为可见光的能量),使接收机的光电传感器在各种户外光照条件下的使用条件基本相似。
另外室外的大雾会引起传输中红外光的散射,大大缩短主动红外探测器的有效探测距离。虽然大部份应用在室外的主动红外探测器在出厂时,已考虑到了上述因素,但在使用中还是应该充分注意到大雾天造成的影响。某些经常有大雾的地区,甚至不适合采用室外安装这种探测器。
a.方向性好,亮度高。一束激光的发散角可做到小于10-3~10-5弧度,即使在几公里以外激光光束的直径也仅扩展到几毫米或几厘米。由于激光光束发散角小,几乎是一束平行光束,光束能聚集在一个很小的平面上,产生很大的光功率密度,其亮度很高。
激光是单一频率的单色光,如氦氖激光器的波长为6328?,在其频率范围内谱线宽度U=10-1Hz,而其他一般光的U = 107-109 Hz。光的相干性取决于其单色性。
激光探测器与主动红外式探测器有些相似,也是由发射器与接收器两部分构成。发射器发射激光束照射在接收器上,当有入侵目标出现在警戒线上,激光束被遮挡,接收机接收状态发生变化,从而产生报警信号。
由上式可以看出,要提高探测器的作用距离,应增大激光源的发射光率,增加光学系统的透过率,减少发射装置的发散角,也可采用高灵敏的光电传感器。
激光具有高亮度,高方向性,所以激光探测器十分适用于远距离的线控报警装置。由于能量集中,可以在光路上加装反射镜,围绕成光墙,从而可以用一套激光器来封锁场地的四周,或封锁几个主要通道路口。
激光探测器采用半导体激光器的波长在红外线波段时,处于不可见范围,便于隐蔽,不易被犯罪分子所发现。激光探测器采用脉冲调制,抗干扰能力较强,其稳定性能好,一般不会因机器本身而产生误报,如果采用双光路系统,可靠性更会大大提高。
面型入侵探测器的警戒范围为一个面。当警戒面上出现入侵目标时即能发出报警信号。振动式或感应式报警探测器常被用做面报警探测器,例如把用做点报警探测器的振动探测器安装在墙面或玻璃上,或安装在某一要求保护的铁丝网或隔离网上,当入侵者触及时网发生振动,探测器即能发生报警信号。
面型入侵探测器更多的是使用电磁感应探测器。电场畸变探测器是一种电磁感应探测器,当目标侵入防范区域时,引起传感器线路周围电磁场分布的变化,我们把能响应这畸变并进入报警状态的装置称为电场畸变探测器。这种电场畸变探测器有平行线电场畸变探测器、泄漏电缆电场畸变探测器。
平行线电场畸变入侵探测器是由传感器线支撑杆、跨接件和传感器电场信号发生接收装置构成,如图2-10所示。传感器是一些平行线条)构成,在这些导线中一部分是场线kHz的信号发生器相连接,工作时场线向周围空间辐射电磁场能量。另一部分线为感应线,场线辐射的电磁场在感应线上产生感应电流。当入侵者靠近或穿越平行导线时,就会改变周围电磁场的分布状态,相应地使感应线中的感应电流发生变化,由接收信号处理器分析后发出报警信号。
传感器线通过跨接件固定在支撑杆上。跨接件上有特种钢弹簧片,一方面可以拉紧传感器线,另一方面可使探测区内有连接的电磁场,没有盲区。信号发生、接收器安装在中间支撑杆上。
平行线电场畸变入侵探测器主要用于户外周界报警。通常沿着防范周界安装数套电场探测器,组成周界防范系统。信号分析处理器常采用微处理器,信号分析处理程序可以分析出入侵者和小动物引起的场变化的不同,从而将误报率降到了最低。
所谓泄露电缆是一种特制的同轴电缆,见图2-11,其中心是铜导线,外面包围着绝缘材料(如聚乙烯),绝缘材料外面用两条金属散层以螺旋方式交叉缠绕并留有孔隙。电缆最外面为聚乙烯保护层。当电缆传输电磁能量时,屏蔽层的空隙处便将部分电磁能量向外辐射。为了使电缆在一定长度范围内能够均匀地向空间泄漏能量,电缆空隙的尺寸大小是沿电缆变化的。
把平行安装的两根泄漏电缆分别接到高强信号发生器和接收器上就组成了泄漏电缆入侵探测器。当发生器产生的脉冲电磁能量沿发射电缆传输并通过泄漏孔向空间辐射时,在电缆周围形成空间电磁场,同时与发射电缆平行的接收电缆通过泄漏孔接收空间电磁能量并沿电缆送入接收器,泄漏电缆可埋入地下,如图示2-12所示。当入侵者进入探测区时,使空间电磁场的分布状态发生变化,因而接收电缆收到的电磁能量发生变化,这个变化量就是入侵信号,经过分析处理后可使报警器动作。
泄漏电缆探测器可全天候工作,抗干扰能力强,误报漏报率都较低,适用于高保安,长周界的安全防范场所。
这种入侵探测器是在一根塑料护套内装有三芯导线的电缆两端,分别接上发送装置与接收装置,并将电缆波浪状或呈其它曲折形状固定在网状的围墙上(如图2-13所示)。用这样有一定长度的的电缆构成一个防区。每两个或四个、六个防区共用一个控制器(称为多通道控制器),由控制器将各防区的报警信号传送至控制中心。当有入侵者触动网状围墙,破坏网状围墙等行为使其震动并达到一定强度时(安装时强度可调,以确定其报警灵敏度),就会产生报警信号。这种入侵探测器精度极高,漏报率为零,误报率几乎为零。且可全天候使用(不受气候的影响)。它特别适合围网状的周界围墙(即采用铁网构成的围墙)使用。
电子围栏式入侵探测器也是一种用于周界防范的探测器。它由三大部分组成,即脉冲电压发生器、报警信号检测器以及前端的电围栏,其系统原理框图如图2-14所示。
当有入侵者入侵时,触碰到前端的电子围栏或试图剪断前端的电子围栏,都会发出报警信号。
这种探测器的电子围栏上的导线,接通由脉冲电压发生器发出的高达1万伏的脉冲电压(但能量很小,一般在4焦耳以下,对人体不会构成生命危害),所以即使入侵者戴上绝缘手套,也会产生脉冲感应信号,使其报警。这种电子围栏如果使用在市区或来往人群多的场合时,安装前应事先征得当地公安等部门的同意。
微波墙式入侵探测器,主要也是用于周界防范。它类似主动红外对射式入侵探测器的工作方式,不同的是用于探测的波束是微波而不是红外线。另外,这种探测器的波束更宽、呈扁平状、象一面墙壁的形状,所以防范的面积更大。其安装后构成的原理框图如图2-15所示。
这种探测器在使用时,应注意使墙式微波波束控制在防范区域内,不向外扩展,以免引起误报。另外,在防范区域(波束)内,不应有花草树木等物体,以免当有风吹动时,产生误报。
空间入侵探测器是指警戒范围是一个空间的报警器。当这个警戒空间任意处的警戒状态被破坏,即发生报警信号。声入侵探测器和微波入侵探测器以及被动红外探测器等都属于空间入侵探测器。
声入侵探测器是常用的空间防范探测器。通常将探测说话、走路等声响的装置称声控探测器。当探测物体被破坏(如打碎玻璃、凿墙、锯钢筋)时,发生固有声响的装置称为声发射探测器。
声控探测器是用声传感器把声音信号变成电信号,经前置放大送报警控制器处理后发出报警处理信号,也可将报警信号经放大推动喇叭和录音机,以便监听和录音。
驻极体传感器被广泛地应用在声控探测器中。在声控探测器中使用的驻极体送话器由一个金属极板蒙上机械张紧的驻极体箔(约10?M),驻极体箔与金属板之间构成一只电容。根据静电感应的原理,与驻极体相对着的金属板上就会感应出大小相等、方向相反的电荷。驻极体电荷在空隙中形成静电场。在声波作用下,驻极体箔发生运动,产生位移,在电容极板上感应出电压。
驻极体送话器的频率响应范围主要取决于送话器的结构。在此频率范围内,驻极体箔的位移与所加的声强成正比,送话器的输出电压仅与声强有关,而与频率无关,音频驻极体送线Hz的频率范围内有恒定的灵敏度。
声发射探测器是监控某一频带的声音发出报警信号,而对其它频带的声音信号不予响应。主要监控玻璃破碎声、凿墙、锯钢筋声等入侵时的破坏行为所发出的声音,玻璃破碎声发射探测器通常也用驻极体传话器作声电传感器。当玻璃破碎时,发出的破碎声由多种频率的声响构成。据测定,主要频率为10kHz~15kHz高频声响信号。当锤子打击墙壁、天花板的砖、混凝土时会产生一个频率为1kHz左右的衰减信号,大约持续5ms;据钢筋时产生频率约3.5kHz、持续时间约15ms的声音信号。采用带通滤波器滤去高于或低于探测声信号的干扰信号,经放大后产生报警信号。
次声为频率很低的音频信号。探测器的工作原理与声发射探测器相同,不过采用低通滤波器滤去高频和中频音频信号,而放大次低频信号报警。
房屋通常由墙天花板、门、窗、地板同外界隔离。由于房屋里外环境不同,强度、气压等均有一定差异,一个人想闯入就要破坏这空间屏障,如打开门窗、打碎玻璃、凿墙开洞等,由于室内外的气压差,在缺口处产生气流扰动,发出一个次声;另外由于开门、碎窗、破墙产生加速度,则内表面空气被压缩产生另一次声,而这二次声频率大约为1Hz左右。两种次声波在室内向四周扩散,先后传入次声探测器,只有当这二次声强度达到一定阈值后才能报警,所以只要外部屏障不被破坏,在覆盖区域内部开关门窗,移动家俱,人员走动,都低于阈值,不会报警。但是这种特定环境下如果采用其它超声、微波或红外探测器都会导致误报。
所谓超声波是指频率在20kHz以上的音频信号,这种音频信号人的耳朵是听不到的。超声波探测器是利用超声波技术构造的探测器,通常分为多普勒式超声波探测和超声波声场型探测器两种。
多普勒式超声波探测器是利用超声对运动目标产生的多普勒效应构成的报警装置。通常,多普勒式超声波探测器是将超声波发射器与接收器装在一个装置内。所谓多普勒效应是指在辐射源(超声波发生器)与探测目标之间有相对运动时,接收的回波信号频率会发生变化。如图2-16所示,设超声波发射接收器发射的信号为:
式中,o为发射超声波的角频率,o=2fo,jo为发射信号的初始相位。那么当发射接收器与目标间有相对运动时,经目标反射后超声波发射接收器接收到的回波信号为:
式中,tr为超声波往返于超声波发射接收器和目标之间所需的时间,设目标与发射接收器之间的距离为S(t),超声波的速度为c,则有
式中,So为初始时刻目标与发射接收器的距离,vr为目标与发射接收器相对运动的径向速度。回波的角频率为
由此可见目标以径向速度vr向发射接收器运动,使接收到的信号频率不再是发射频率fo,而是fo+fd,此现状称多谱勒效应,fd称为多谱勒频率。当目标背向探测器运动时,r为负值,则所接收的回波信号频率为fo-fd。
超声波发射器发射25kHz~40kHz的超声波充满室内空间,超声波接收器接收从墙壁、天花板、地板及室内其它物体反射回来的超声能量,并不断的与发射波的频率加以比较。当室内没有移动物体时,反射波与发射波的频率相同,不报警;当入侵者在探测区内移动时,超声反射波会产生大约100Hz多普勒频移,接收机检测出发射波与反射波之间的频率差异后,即发出报警信号。
场型超声波入侵探测器是将发射器和接收器分别安装在不同位置。超声波在密闭的房间内经固定物体(如墙、地板、天花板、家具)多次反射,布满各个角落。由于多次反射,室内的超声波形成复杂的驻波状态,有许多波腹点和波节点。波腹点能量密度大,波节点能量密度低,造成室内超声波能量分布的不均匀。当没有物体移动时,超声波能量处于一种稳定状态;当改变室内固定物体分布时,超声能量的分布将发生改变。而当室内有一移动物体时,室内超声能量发生连续变化,而接收器接收到这连续变化的信号后,就能探测出移动物体的存在,变化信号的幅度与超声频率和物体移动的速度成正比。
微波是一种频率很高的无线电波,波长很短,一般在0.001m~1m之间,由于微波的波长与一般物体的几何尺寸相当,所以很容易被物体所反射。按工作原理微波入侵探测器可分为移动型微波探测器和阻挡型微波探测器。
移动型微波探测器又称多普勒式微波入侵探测器。其工作原理与多谱勒式超声波探测器相同,只不过探测器发射和接收的是微波而不是超声波。
微波发射器通过天线向防范区域内发射微波信号,当防范区域内无移动目标时,接收器接收到的微波信号频率与发射信号频率相同,为fo。当有移动目标时,由于多普勒效应,目标反射的微波信号频率将发生偏移,偏移的多普勒频率为fd,接收机分析fd的大小以产生报警信号。
由于多普勒效应告诉我们,偏移的多普勒频率fd,正比于目标径向的移动速度而反比于工作波长,所以微波探测器较多普勒超声探测器有更高的灵敏度。
由上式能够准确的看出,要增加探测距离,可增加发射天线增益,提高发射天线的方向性,将视角变小。而提高发射功率固然可以增大探测距离,但不经济,尤其是大功率的微波幅射还有损健康,所以一般不采用。
阻挡型微波探测器由发射器、接收器和信号处理器组成。使用时将发射天线和接收天线相对放置在监控场地的两端,发射天线发射的微波束直接送达接收天线。当没有运动目标遮断微波束时,微波能量被接收天线接收,发出正常工作信号;当有运动目标阻挡微波束时,天线接收到的微波能量减弱或消失,此时产生报警信号。
有关被动红外探测器及由微波与红外组成的双鉴式探测大等空间入侵探测器,前面已有阐述,这里就不再提及了。
上一篇:一文带你了解晶振中的有源和无源